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I. In the Nichonachean Ethics, Aristotle con- 
sidered the question of what is a fair or equit- 
able apportionment of a resource. He considered 
the distribution of a resource to be equitable 
if the apportionment to each individual is in 
direct proportion to his worth to society. Marty 

would take issue with this definition, and in- 
deed, philosophical and ideological debate about 
an acceptable definition of equity continues. 
The issues are not simple. In a recent article 
in Commentary [8], the readership was challenged 
to define a "fair" distribution of income. In- 
come is not the only resource for which an equit- 
able distribution is of concern. For example, 
some recent work [2] has discussed equity of 
political representation (one man-one vote) and 
school integration. 

Equity questions may be posed in different 
contexts. For example, "Is the resource distri- 
bution of a given population equitable ?" Another 
context may pose the question "Is the resource 
equitably distributed among the subgroups of a 
population ?" The authors' interests in this 
problem arises from concern for equity in the 
delivery of mental health services to population 
subgroups [12]. 

Statisticians as a rule do not attempt to 
make a value judgment as to what is equitable but 
have worked on methodology - defining curves and 
indices and giving their properties - to describe 
the dispersion of a resource over the members of 
a population. The principal indices which have 
been developed for this purpose have been based 
on Lorenz curves. Section II of this paper 
collects and mathematically organizes properties 
of Lorenz curves and briefly surveys some 
associated measures of equity. In Section III a 
new theorem relating the behavior of Lorenz curves 
to monotone hazard rates is given. Specifically, 
it is shown that the Lorenz curves corresponding 
to distribution functions admitting increasing 
(decreasing) hazard functions lie above (below) 
the Lorenz curve of the exponential distribution. 
Section IV introduces an equity function and an 
equity index which may be used to study the rela- 
tive behavior of the distribution of a resource 
over a subpopulation with respect to the total 
population. 

II. Lorenz curves introduced in 1905 [9] have 
traditionally been used by economists to describe 
the equity of distribution of income across a 
population. The curve at a fixed point u measures 
the percentage of total income accounted for by 
the uth percentile of the population ordered 
according to increasing income. 

Let Y denote the nonnegative random variable 
representing the resource, G its absolutely con- 
tinuous distribution function and g its density 
function. For those random variables Y having a 
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finite mean E[Y], the Lorenz curve, ty(u), is 
defined by the equation 

G -1(u) 

yg(y)dy 
ty(u) 

E [Y] 

In this setting t(u) may roughly be thought of as 
the proportion of E[Y] accounted for by the uth 
percentile of the distribution of Y. 

(1) 

By differentiating (1), we obtain an altern- 
ate definition of t(u), [4]. 

LY(u) ó -1(x) dx. (2) 
E 

We observe that a distribution function gives 
rise to a Lorenz curve, and conversely since 

E t' (u) = G -1(u), 
G may be recaptured from knowledge 
However more than one distribution 
rise to the same Lorenz curve. In 
easily seen that for a > 0, 

of t(u) and E. 
function gives 
fact, it is 

taY(u) (u). 

These definitions have the disadvantage that the 
so called curve of equal distribution, t(u) =u, 
cannot be obtained. However, one can produce 
Lorenz curves arbitrarily close to the curve of 
equal distribution. This follows from the obser- 
vation that for a > 0, 

(3) 
E[Y]9.,1,(u) + au 

E [Y] + a 

Letting a the Lorenz curve approaches u. 

The following properties of t(u) are 
immediately obvious. 

1. t(0) = 0, t(1) = 1. 

2. t(u) is monotone nondecreasing. (t'>0) 

3. t(u) < u. 

4. t(u) is convex. 

Conversely any function t satisfying these 
properties will be thought of as a Lorenz curve. 
Properties (1) and (2) imply that itself is a 



distribution function whose support is the unit 
interval. The kth moment associated with the 
distribution function is given by 

E [YGk(Y)] 

E[Y] 

An interesting observation is that if these 
moments are known for all k along with E[Y] then 

and hence G(x), can be recaptured. 

It is known that if G is lognormal then 
£(u) is symmetric about the line = 1 -u. 
Kendall [7] and more recently Al- Atragchi [1] 

have shown that the converse is false and have 
derived necessary conditions on G for the 
symmetry conditions to hold. 

Various measures of equity of distribution 
have been derived on the basis of the Lorenz 
curve. One such measure is the fair share co- 
efficient which searches for the total propor- 
tion of the population whose values of the re- 
source are less than the mean value, i.e., G(E). 
In of the Lorenz curve finding the fair 
share coefficient is equivalent to finding the 
value of u at which L'(u) = 1. 

A more commonly used measure, the Gini co- 
efficient, y, [5], is the normalized (to have 

value of one) area between t(u) and the 
curve of equal distribution, 

1 

Y = 2 (u- t(u))du. 
o 

For example in a recent Fortune article [10], it 
is noted that the Gini coefficient for the dist- 
ribution of intone in the U. S. has fallen over 
the past 35 years from .44 to .35. It is well 
known that y is related to the measure of con- 
centration also introduced by Gini, A= E[IY1 -Y I] 

where Y1 and Y2 are independent and identically 
distributed. The relationship is given by the 
equation 

(4) 

Another measure of inequity is given by the 
vertical distance between the curve of 

equal distribution and £(u), [11]. It is easily 
seen that this quantity occurs at u = G(E), the 
fair share coefficient. This distance is referr- 
ed to as the Schutz coefficient and is equal to 
G(E) - 

III. The exponential distribution gives rise to 
the Lorenz curve 

k(u) = u + (1-u)log(1-u). 

Y, general, ranges between 0 and 1, and for 
the exponential y = In same sense this Hakes 
the exponential a dividing distribution in terms 
of y. In this section we show that it is a div- 
iding distribution for the class of distribution 
functions admitting monotone hazard rates. The 
hazard rate for a distribution G is defined as 
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h(t) log (1-G(t)). 

dt 

Theorem:1 Y have an increasing (decreasing) 
hazard Then 

2y(u) u + (1- u)log(1 -u). (5) 

Proof: 

The Lorenz curve for a random variable X 
having the exponential distribution may be re- 
written in terms of the distribution function G 
of the random variable Y as 

G-1(u) 
Rx(u) = -I g(t)log(1- G(t))dt. 

o 

prove the theorem, it is equivalent to show 
that 

G-1(u) 
Ry(u) =f 

o E 

G-1(u) 
-I g(t)log(1-G(t))dt = (6) 

According to a result from reliability theory 
[3], the tail of a distribution having a monotone 
hazard rate crosses the tail of an exponential 
with the same mean only once. For increasing 
(decreasing) hazard we have 

1 - G(t) net /,.t 
(7) 

1 - G(t) (7)e -t /E, t > t* 

where t* is the point at which they cross. Thus 
for any u such that G -1 (u) < t *, the inequality 
(6) is true because it is pointwise true. Con- 
sider now a u for which G- (u) > t *. The in- 
equality is no longer pointwise true. However 
the integral inequality holds. The proof hinges 
on the fact that the integrands cross once at t* 
and (1) = Ay (1) = 1. Each side of (6) can be 
rewritten as a sum of integrals from 0 to t* 
t* to G -1(u). The integrals from 0 to t* may be 
written as 1 minus the integrals frac t* to co. 
Thus we have to show 

G-1(u) 

- tg(t) dt tg(t) dt 

t E E 
G1(u) 

g(t)log(1- G(T))dt - 4g(t)log(1- G(t))dt 

t t 

or equivalently that 

-7 tg(t) > g(t)log(1- G(t))dt. 
G-1(u) E G-1(u) 

In this form, the inequality is pointwise true. 
Hence the lemma is true for all u. 

The intuitive interpretation of this result 
is based upon inequality (7) which indicates that 



for increasing hazard there is less mass in the 
tails of the distribution function than in the 
tails of the exponential. Hence there is a 
smaller proportion of the population accounting 
for high values of the resource leading to a 
more equitable (higher) £(u). Similar intuition 
holds for the decreasing hazard case. 

Corollary: Let =1,2 be independent and 
identically distributed with monotone hazard 
rate. Then 

- E[Y1] 

if the hazard is increasing (decreasing). 

Proof: The proof follows from the theorem and 
equation (4). 

If the Lorenz curve of a distribution lies 
above (below) that of the exponential, we cannot, 
however, conclude that the distribution has an 
increasing (decreasing) hazard rate. That is, 

the converse of the theorem is not true. We can 
easily see this from (3) since if we choose Y 
with an arbitrary hazard function, 'a' can be 
chosen so that the Lorenz curve of Y+a lies above 
that of the exponential. One can also construct 
examples for which the random variable's Lorenz 
curve lies below that of the exponential, while 
its hazard function is not decreasing (e.g., 

£(u) = u2k, k large). 

IV. If one wishes to compare distinct popula- 
tions with respect to equitable apportionment of 
a variable such as income, computing separate 
Lorenz curves (and their associated Gini co- 
efficients) for each population is a method which 
is reasonable. However, in the particular appli- 
cation of concern to the authors this approach 
did not seem appropriate. The application in- 
volved comparing the apportionment of a resource 
over the total population with its apportionment 
over substrates of the population. A comparison 
of the Lorenz curve of the total with the Lorenz 
curve of the substrata does not indicate whether 
the substrata receives its fair share with res- 
pect to the total. For example, suppose the 
Lorenz curve of a substrata was identical to the 
Lorenz curve for the total population. This 
indicates that the apportionment of the total 
resource among the entire population is identical 
to the apportionment of the resource restricted 
to the substrata. However, this gives no 
immediate insight into the relative position of 
the substrata among the entire population. Hence 
to describe equity of a substrata, A, with re- 
spect to the total population, an equity function 
BA(u) is introduced whose value at a fixed point 
u represents the proportion of the substrata, A, 
whose values are less than or equal to the uth 
percentile for the total population. 

More formally, we consider the underlying 
population to be decomposable into two measur- 
able disjoint, exhaustive subsets A and Á. Let 
Y(w), with distribution function G, be the vari- 
able of interest. Introduce the indicator func- 
tion of A i.e., 
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I(w) = 1, 

I(w) = 0, 

for any Let 

W(y) = P(Y<yII =1). 

Thus, W represents the distribution function of Y 
restricted to members of the population in A. 
The equity function for the substrata A described 
above is formally written as 

BA(u)=P(Y<G-1(u)II=1) 
(8) 

W(G -1(u)) , 0 < u < 1. 

(Note that since B is a distribution function it 
is monotonically increasing and lies between zero 
and one.) 

If BA(u)>u for all u then W() >G(). This 
implies that the proportion of the substrata 
whose resource values are less than y = (u) 

is larger than the corresponding proportion in 
the total population. Analogous conclusions 
follow for the case BA(u)<u. Thus there is a 
certain inequity with respect to the resource in 
the substrata. If BA(u) u, for all u the 
resource values among the substrata are distrib- 
uted exactly as over the total population. We 
can in fact analytically show the following 
lemma. 

Lemma. BA(u) = u for all u if and only if Y and 
I are independent. 

Proof: Using (8), B(u) u implies W = G. Hence 

P(Y<y I I = 1) = P(Y<y) ; 

i.e., Y and I are independent. The converse is 
also immediate. The case BA(u) u may be 
thought of as "Equity in Distribution." 

If we let K(y) be the distribution function 
of Y restricted to the substrata Tend a= P(I =1) 
then 

G(y) = a W (y) + (1-a.) K (y). (9) 

The relationship 

u = a BA(u) + (1-a) B(u) 
A 

immediately follows from equation (9). Hence if 
BA(u) >u then B (u)<u. 

At the beginning of this section, an argu- 
ment was given for the inappropriateness of direct 
examination of the Lorenz curve of the substrata 
as a measure of equity of the substrata with 
respect to the total population. However, knowl- 
edge of the curve BA(u) provides no more informa- 
tion than does knowledge of the Lorenz curves of 
the total population and the substrata's along 
with the respective means since this enables one 
to generate both G and W and hence BA(u) = 
W(G-1(u)) = W(E2'(u)). However since these 



Lorenz curves do not indicate the relative amount 
of the total resource available to the substrata, 
A, it is advisable to plot in any application the 
Lorenz curve of the total population and BA(u). 

In an actual application one may observe N 
independent observations of Y of which n are 
observations from the substrata A. The distri- 
bution function of Y will typically be unknown. 
Thus one must estimate BA(u). For points u =i/N, 
BA be estimated as the proportion of the n 
observations of thesubstrata whose values are 
below ghat of the ith smallest of the total. 
Since BA(u) is a step function its values for 
other u are given by the equation 

BA(u) = BA(i/N) u < (1 +1)/N. 

Using the one may test for "Equity in 
Distribution" by testing for independence of the 
random variables Y and I. Tb test BA(u) u one 
may use standard two sample tests since the 
hypothesis is equivalent to W E G which is 
equivalent to W K. Hence if the distribution 
functions over A and Tare not found to differ 
then one cannot reject "Equity in Distribution ". 

In the case where B(u) crosses u, one may 
test for equity at a given point uo. This is 
done by using Fisher's exact probability test on 
the 2 x 2 contingency table whose rows are the 
proportions of the population whose resource 
values are less than and more than G -1(u0) and 
whose columns refer to the substratas A and A. 
Thus the four entries are BA(uo), 

1- BA(%), 1 -B o). 

In this context the estimator of the 
quantity 

J 
W(G-1(uo)) K(G-1(u0)) 

A 
1- W(G- 1(u0))/ 1- K(G -1( %)) 

has been introduced as a measure of association 
and large sample distribution theory is well 
known. The assumption of equity at the point 
corresponds to the rows and columns being inde- 
pendent which corresponds alternatively to the 
hypothesis that JA(un) = 1. result 
corresponds to BA > uo, i.e., inequity 
towards the substrata A. Hence JA be view- 
ed as an index of equity of the substrata at the 
point u0. If is chosen as the fair share co- 
efficient of the total population, G(E), then J 
has a simple interpretation. The numerator is 
the relative odds of being in the under fair 
share group of the total population, conditional 
on being a of A. The denominator is de- 
fined analogously and J is the ratio of the rel- 
ative odds. 

Finally we note that several more global 
measures of inequity suggest themselves. We 
propose two which correspond somewhat to the 
definitions given in Section II. 

The first measure (analogous to the Gini 
coefficient) proposed is given by the equation 
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log 2 
(1- I+(BA(u) -u)+ du) 

(1- (BA(u) -u) du) 

where is integrated over those values of 
u such that The range of a is between 

-1 and +1, with negative values indicating in- 
equity towards the substrata A. The value a = 0 
does not imply equity in distribution although it 
does in sense imply that inequities toward 
A are compensated by inequities toward A, albeit 
at different values in the range of the resource 
values. 

Analogous to the Schutz coefficient, we-can 
define the maximum vertical distance between the 
forty five degree line and BA(u). This 
may occur at several points u. In a given appli- 
cation where N independent observations of the 
resource are made, quantity = sup1BA(u) -ul 

u 
where is the step function whose estimates 

at the points u = are described in Section 
III. The asymptotic distribution of,DN (which is 
the Kolmogov- Snìrnov statistic) is well known. 
Since the equation BA(u) = u is equivalent to the 
hypothesis G = W, this statistic may also be used 
as a test of the two sample problem. Hajek [6] 

has commented on the relationship between rank 
order tests and the test. 
ther for any given confidence level a, the 
quantity d(a) obtained from the asymptotic dis- 
tribution of such that 

P > d(a)} = a 

may be used to form an a level confidence band 
for BA(u), namely 

(BA(u) - d(a), BA(u) + d(a)) . 

1. A referee has pointed out that this result is 
a corollary of theorem 7 of The Estimation of 
the Lorenz Curve and Gini Index by J.Gastwirth 
appearing in The Review of Economics and 
Statistics, 2/72. 
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